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Introduction

The goal of structure from motion (SfM) is to recover both camera motion and
scene structure, starting from point correspondences in multiple images:

• camera motion = camera matrices/poses;
• scene structure = 3D coordinates of points.

📕 O. Ozyesil, V. Voroninski, R. Basri, A. Singer. A survey of structure from motion. Acta Numerica (2017).
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Introduc-on

Formally, the task is to compute camera matrices Pi and coordinates of 3D points
Mj starting from image points mij such that the following equation is best satisfied:

In the calibrated case, calibration matrices are known and projection matrices
consist of rotations and translations:
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mij ' PiMj
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Projection matrix 
of camera i
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Projection of 
point j in image i
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Pi = Ki[Ri ti]
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Introduction

Is 3D reconstruction unique?

The solution is defined (at least) up to a global projective transformation:

If cameras are calibrated, then the reconstruction ambiguity is represented (at
least) by a global rotation, translation and scale.
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mij ' PiMj = Pi QQ�1

| {z }Mj = PiQ|{z}Q
�1Mj| {z }
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Introduction

The task of solvability is to analyse the ambiguities inherent to the SfM problem:
• single transformation à well-posed problem✅
• multiple transformations à ill-posed problem❌

There are many ways to approach SfM!

Here we focus on a framework that recovers camera motion from two-view
relationships only (no points):

• Essential matrix (calibrated)
• Fundamental matrix (uncalibrated)
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⚠



Introduction

The problem can be represented as a viewing graph:

📕 Levi & Werman. The viewing graph. CVPR 2003.
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• Nodes = cameras/images
• Edges = two-view relations



Introduction

For which graphs do we have a well-posed problem?

✅ A graph is called solvable if and only if the available two-view relaMonships
uniquely (up to a single transformaMon) determine the cameras à unique solu;on
❌ Otherwise it is called non solvable à mul;ple (infinitely many) solu;ons
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?

🤔



Introduction

Here we focus on solvability only (we do not address reconstruc;on).

It is important to check solvability before running SfM:
✅ If the graph is solvable, the SfM problem is well-posed.
❌ If the graph is not solvable, the problem is ill-posed: no method will return a useful soluFon.
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Calibrated Uncalibrated

Solvability 📕 Arrigoni & Fusiello. Bearing-based network
localizability: a unifying view. IEEE TPAMI (2019).

📕 Levi & Werman. The viewing graph. CVPR 2003.
📕 Rudi, Pizzoli & Pirri. Linear solvability in the viewing graph. ACCV 2011.
📕 Trager, Osserman, & Ponce. On the solvability of viewing graphs. ECCV 2018.
📕 Arrigoni, Fusiello, Ricci & Pajdla. Viewing graph solvability via cycle
consistency. ICCV (2021).

Reconstruction 📕 Ozyesil, Voroninski, Basri & Singer. A survey of
structure from motion. Acta Numerica (2017).

📕 Kasten, Geifman, Galun & Basri. GPSfM: global projective SfM using
algebraic constraints on multi-view fundamental matrices. CVPR (2019)
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• Calibration matrix is required in advance
• Reconstruction is metric (up to scale)

True scene

Reconstruction



The Calibrated Case
Problem Formulation

The viewing graph is a graph where vertices correspond to cameras and edges
represent essential matrices.
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camera 1 

camera 2 

camera 3

camera 4 E12

E23

E43

E24

E13 Each essential matrix can be decomposed into:
• Relative rotation 𝑅!"
• Relative translation 𝑡!" (known up to scale)



The Calibrated Case
Problem Formulation

Solvable graph ⟺ two-view transformations uniquely (up to a single rotation,
translation & scale) determine the camera poses.

• We consider a noiseless-case
• We split the problem into rotation and translation:
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Consistency constraint 
between relative and 
absolute poses
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The Calibrated Case
Problem Formulation

Solvable graph ⟺ two-view transformations uniquely (up to a single rotation,
translation & scale) determine the camera poses.

• We consider a noiseless-case
• We split the problem into rotation and translation:

👉 The magnitude of relative translations are unknown:
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Consistency constraint 
between relaFve and 
absolute poses
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||tij || = ||zij || =?
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The Calibrated Case
Rotations

In which cases can we uniquely (up to a global rotation) recover camera rotations
starting from relative rotations?

Solvability for rotations ⟺ connected viewing graph
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Given a spanning tree, a solution can be
found by setting the root to the identity
and propagating the consistency constraint:

𝑅! = 𝑅!"𝑅" ⟺ 𝑅!"= 𝑅!𝑅"#

🤔



The Calibrated Case
Transla2ons

In which cases can we uniquely (up to translation & scale) recover camera positions
from pairwise directions?

1619/06/23 Viewing Graph Solvability

• Nodes = unknown locations
• Edges = known directions

🤔

uij =
xi � xj

||xi � xj ||
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A solution can be found from the direction
constraint, which is a linear equation!



The Calibrated Case
Transla2ons

Theorem. A graph is solvable if and only if rank(S)=3n-4

✅ If the viewing graph is solvable, then the problem is well-posed.
❌ Otherwise, the problem is ill-posed: the largest solvable component has to be
extracted ⟺ clustering rows in the null-space of S

📕 F. Arrigoni, A. Fusiello. Bearing-based network localizability: a unifying view. IEEE TPAMI (2019).

📕W. Whiteley.Matroids from Discrete Geometry. American Mathematical Society (1997)

📕 R. Kennedy, K. Daniilidis, O. Naroditsky, C. J. Taylor. Identifying maximal rigid components in bearing-based localization. IROS (2012)
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Translation & 
scale ambiguity

Localization 
Equation: Sx=0



The Calibrated Case
Translations

Solvability for translaMons ⟺ parallel rigid viewing graph

DefiniHon. A graph is parallel rigid when all the configura;ons with parallel edges
differ by transla;on and scale. Otherwise it is called flexible.

📕 O. Ozyesil, A. Singer. Robust camera locaAon esAmaAon by convex programming. CVPR (2015).
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Parallel rigid Flexible 😄

This is a well
studied task!



The Calibrated Case
Transla2ons

A parallel-rigid graph must satisfy the following necessary conditions:
• it has at least (3n-4)/2 edges
• It is bridgeless (i.e., it remains connected after removing any edge).
• It is biconnected (i.e. it does not have articulation points meaning that it remains

connected after removing any node).
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Edge-based formulation

Proposition. If a graph is parallel rigid then it does not have neither articulation
points nor bridges (i.e., it remains connected after removing any node/edge).
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flexible flexible flexible

Synchronization: a general framework for mosaicking, 3D reconstruction, matching and segmentation problems 18
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The Calibrated Case
Examples

2019/06/23 Viewing Graph Solvability

Pa
ra

lle
l r

ig
id

Fl
ex

ib
le

• A single cycle of length 3 or 4
is parallel rigid, whereas
longer cycles are flexible

• Union of rigid graphs with a
common edge is also rigid ⟹
sufficient conditions



The Calibrated Case
Examples

Cornell ArtsQuad http://vision.soic.indiana.edu/projects/disco/

1DSfM datasets http://www.cs.cornell.edu/projects/1dsfm/

2119/06/23 Viewing Graph Solvability

Examples

Dataset nodes % edges rigid articulation bridges

Arts Quad 5530 2 7 30 10
Piccadilly 2508 10 7 59 62
Roman Forum 1134 11 7 28 28
Union Square 930 6 7 60 68
Vienna Cathedral 918 25 7 19 20
Alamo 627 50 7 17 19
Notre Dame 553 68 3 – –
Tower of London 508 19 7 19 19
Montreal N. Dame 474 47 7 7 7
Yorkminster 458 26 7 9 10
Madrid Metropolis 394 31 7 17 15
NYC Library 376 29 7 17 18
Piazza del Popolo 354 40 7 8 9
Ellis Island 247 67 7 6 7

Cornell ArtsQuad http://vision.soic.indiana.edu/projects/disco/

1DSfM datasets http://www.cs.cornell.edu/projects/1dsfm/

Synchronization: a general framework for mosaicking, 3D reconstruction, matching and segmentation problems 28

http://vision.soic.indiana.edu/projects/disco/
http://www.cs.cornell.edu/projects/1dsfm/


The Calibrated Case
Examples

Simplified representation: edges outside the largest rigid component are drawn.
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Roman Forum Arts Quad



The Calibrated Case
Summary

Solvability for rotations ⟺ connected viewing graph
Solvability for translations ⟺ parallel rigid viewing graph

• Parallel rigidity can be tested from the rank of a linear system.
• Maximal components can be extracted from the null-space of such a system.
• Large-scale datasets can be processed.

2319/06/23 Viewing Graph Solvability

😄
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• No assumptions
• Reconstruction is projective

True scene

Reconstruction



The Uncalibrated Case
Problem Formula2on

The viewing graph is a graph where vertices correspond to cameras and edges
represent fundamental matrices.

Solvable graph ⟺ it uniquely (up to a single projective transformation) determines
a projective configuration of cameras.

2519/06/23 Viewing Graph Solvability

• Solvability depends on the graph and
camera centres only.

• It can be reduced to a property of the
graph only if we assume generic centres.



The Uncalibrated Case
Necessary Conditions

• A solvable graph has at least (11n-15)/7 edges.
• In a solvable graph, all the vertices have degree at least two and no two

adjacent vertices have degree two (if n > 3).

📕M. Trager, B. Osserman, and J. Ponce. On the solvability of viewing graphs. ECCV 2018.

📕 N. Levi and M. Werman. The viewing graph. CVPR 2003
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Edge-based formulation

Proposition. A cycle of length ` is parallel rigid if and only if `∑ 4 .
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The Uncalibrated Case
Sufficient Conditions

• Triangulated graphs are solvable
• Constructive approaches are also available

📕M. Trager, M. Hebert, and J. Ponce. The joint image hand-book. ICCV 2015.

📕 A. Rudi, M. Pizzoli, and F. Pirri. Linear solvability in the viewing graph. ACCV 2011.
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✅✅✅



The Uncalibrated Case
Algebraic Characterization

Idea: characterize the set of projective transformations that represent all possible
ambiguities of the problem.

First, let us identify the family of transformations that leave a single camera fixed.

Proposition. Let P be a camera with centre c. All the solutions to
are given by

📕M. Trager, B. Osserman, and J. Ponce. On the solvability of viewing graphs. ECCV 2018.
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PG = aP for G 2 GL(4,R) and a 2 R 6=0
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G = aI4+cvT 8a 2 R 6=0,v 2 R4
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PG = aP for G 2 GL(4,R) and a 2 R 6=0
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The Uncalibrated Case
Algebraic Characterization

What happens when we have multiple cameras, represented as a viewing graph?

Solvable graph ⟺ 𝐺!" = 𝑠!" 𝐻

📕M. Trager, B. Osserman, and J. Ponce. On the solvability of viewing graphs. ECCV 2018.
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Pj

Ghi Gij 

Ph

Pi

Compatibility ConditionLet us assign an unknown
projecUve transformaUon 𝐺!"
to every edge, and let us
consider two edges (ℎ, 𝑖) and
(𝑖, 𝑗) with a common vertex 𝑖.

ci 2 R4 is known (camera center)
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Ghij 2 GL(4) is unknown
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Single projective
transformation



• Polynomial system of equations with many unknowns

📕M. Trager, B. Osserman, and J. Ponce. On the solvability of viewing graphs. ECCV 2018.

The Uncalibrated Case
Algebraic Characterization

Input Graph

1 2

34
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ci 2 R4 is known (camera center)

<latexit sha1_base64="+zoBgObchGmOsFAAbru4Go+SNMY="></latexit>

(h, i) and (i, j) are adjacent edges
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Ghi 2 GL(4) is unknown
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• Polynomial system of equations with many unknowns

📕M. Trager, B. Osserman, and J. Ponce. On the solvability of viewing graphs. ECCV 2018.

• It is possible eliminate variables 
📕 Arrigoni, Fusiello, Ricci & Pajdla. Viewing graph solvability via cycle consistency. ICCV (2021).

The Uncalibrated Case
Reduced Formulation

Input Graph

1 2

34
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ci 2 R4 is known (camera center)
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(h, i) and (i, j) are adjacent edges
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Ghi 2 GL(4) is unknown
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• Each node is an edge in the
input graph;

• Two nodes are linked if the
corresponding edges are
adjacent in the input graph.

• There is one equation for
each edge in the line graph.



The Uncalibrated Case
Reduced Formula2on

How can we eliminate the G variables?
Idea: 

Input Graph Line Graph

12 23

34
42

41

1 2

34

3319/06/23 Viewing Graph Solvability

• Each node is an edge in the
input graph;

• Two nodes are linked if the
corresponding edges are
adjacent in the input graph.

• There is one equation for
each edge in the line graph.

Z12,23 · Z23,42 · Z42,12 = G12 G
�1
23 G23| {z }

I

G�1
42 G42| {z }

I

G�1
12 = I

<latexit sha1_base64="VaMsvOzcUh/iaBi1FjW/G33/Gx4="></latexit>
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The Uncalibrated Case
Reduced Formulation

cycle consistency (on all cycles) ⟺ cycle consistency (on a basis)

Input Graph Line Graph
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Cycle Consistency
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The Uncalibrated Case
Reduced Formulation

The formulation can be simplified via a change of variables:
⟹ For a solvable graph, we have exactly 1 solution (no ambiguities)

Input Graph Line Graph

12 23

34
42

41

1 2

34

Cycle Consistency
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The Uncalibrated Case
Algorithm

https://github.com/federica-arrigoni/solvability
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global projective ambiguity (which is inherent to the prob-
lem), observe that a global change in the coordinate system
affects the matrices G⌧ only, but it does not affect the prod-
uct G⌧G

´1
� “ Z⌧� . So, projective ambiguity is not present

in the formulations given in Eq. (11) and (14) (that do not
involve the matrices G⌧ ).

Some examples are reported in the supplementary mate-
rial, which give a better intuition about how we construct
the main equations of our formulation.

4. Proposed Algorithm

Our algorithm (summarized in Alg. 1) is a direct conse-
quence of the theoretical results from Sec. 3; in particular
we follow the simplified formulation derived in Sec. 3.3,
which is based on Eq. (14).

Algorithm 1 Viewing Graph Solvability
Input: undirected graph G “ pV, Eq
Output: solvable or not solvable

1. randomly sample the camera centres
2. compute the line graph LpGq
3. compute a cycle consistency basis for LpGq
4. set up equations of the form (14) and (23)
5. compute the number s of real solutions

if s “ 1 then

solvable
else

not solvable
end if

Some steps require additional explanations, which are
given in the following remarks.
Remark 8. Concerning Step 3, we focus on a particular type
of cycle consistency basis [8], namely, we consider a fun-
damental cycle basis, due to its simplicity. As a matter of
fact, this basis can be constructed starting from a spanning
tree, which can be found in linear time by either depth-first
search or breadth-first search. Let T be a spanning tree of
LpGq “ psV, sEq, then adding any edge from sEzT to T gen-
erates a cycle; the set of such cycles constitutes the funda-
mental cycle basis [13].
Remark 9. As for Step 4, recall that our unknowns comprise
one scale bk P R for each cycle and one vector u⌧� P R4

for each edge in the line graph. Such variables must satisfy
the following constraints:

bk ‰ 0 (21)

W⌧� “ I4 ` ciu
J
⌧� P GLp4,Rq. (22)

Instead of explicitly enforcing them, we add the following
equation

z⌧� detpI4 ` ciu
J
⌧�q ` 1 “ 0. (23)

for each edge in the line graph, where z⌧� P R is an aux-
iliary variable. Clearly, if detpI4 ` ciuJ

⌧�q “ 0 then the
above equation can not be satisfied over real numbers. In
other words, such additional equation has the effect of auto-
matically discarding non invertible matrices. Observe also
that, if all the matrices W⌧� are invertible, then the product
of a subset of them is also invertible. In other terms, the
left term in Eq. (14) is invertible for each cycle and hence
bk ‰ 0. Thus equation (23) implies both (22) and (21).

Remark 10. Step 5 is based on computational algebraic ge-
ometry. In particular, we employ Gröbner basis computa-
tion [6], that is one of the main practical tools for solving
systems of polynomial equations with coefficients in a field.
A Gröbner basis can be viewed as a non-linear generaliza-
tion of the Gaussian elimination for linear systems [14].

Remark 11. Although our problem is stated over R, for
the sake of efficiency [1] we perform computations over Zp

(i.e., the integers modulo a large prime number p), as cus-
tomary in applied algebraic geometry. This yields the same
number c of solutions as in C [20], which is greater or equal
to the sought number s of solutions in R. Recall that s • 1,
since there always exists at least one trivial real solution
(given by u⌧� “ 0, bk “ 1 and z⌧� “ ´1). Several cases
are given: i) if c “ 8 then s “ 8 [23]; ii) if c “ 1 then
s “ 1; iii) if c ° 1 then s • 1. Pleases note that if c is even
then s • 2, for solutions must come in conjugate pairs.

Our algorithm is implemented in Macaulay24 and the
code is publicly available5.

5. Examples

In this section we show that our algorithm can be prof-
itably used to check viewing graph solvability on several ex-
amples. We follow the protocol used in [23] where graphs
with minimal number of edges (i.e., m “ rp11n ´ 15q{7s)
are analyzed.

As we already pointed out, there exist five cases with
eight nodes that are left undecided in [23] (see Tab. 2 in
[23]), as they satisfy necessary conditions but they do not
satisfy a proper sufficient condition6. Our approach, in-
stead, is an effective test for solvability, being based on a
characterization of the problem (i.e., a condition that is both
necessary and sufficient); as such, it was able to classify all
those undecided cases (shown in Fig. 1) as solvable.

We now turn our attention to minimal graphs with nine
nodes, from which an interesting result can be proved. Also
in this case there are several undecided graphs in [23],
which, in particular, are finite solvable (i.e., they identify a
finite number of camera configurations). Finite solvability

4http://www.math.uiuc.edu/Macaulay2/
5URL removed for blind review.
6Actually, Trager et. al [23] manually worked out that one of those

graphs is solvable.
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Gröbner basis
(symbolic computation)

✅

❌
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The Uncalibrated Case
Examples

Minimal viewing graphs with 9 vertices
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Solvable

Not solvable 

✅

❌



The Uncalibrated Case
Examples

Execution times on minimal graphs

38

Solvable graph with 90 nodesSolvable graph with 20 nodes Solvable graph with 50 nodes
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The Uncalibrated Case
Examples

Subgraphs with 9 nodes sampled from 
real structure-from-motion viewgraphs

39

Unsolvable Solvable
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The Uncalibrated Case
Summary

• Thanks to cycle consistency, less unknowns are involved than previous work:

• It is possible to classify previously undecided viewing graphs and extend
solvability testing up to minimal graphs with 90 nodes.

• Larger/denser graphs can not be processed
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#Eq. #Var. #Eq. #Var. #Eq. #Var. #Eq. #Var. #Eq. #Var. #Eq. #Var.

Our formulation 64 36 64 40 112 63 112 67 192 100 208 109

Trager et al. [23] 128 120 144 141 224 198 240 219 352 286 384 312

Table 1. The number of equations and variables are reported on some minimal examples for our formulation (see Eq. (13), (20)) and the
one proposed in [23] (see Eq. (7), (8)). Recall that the latter (described in Eq. (2) and (5)) is given as a theoretical result in [23] due to its
computational complexity, without giving rise to an effective algorithm. Our formulation is more practical as it involves less unknowns.

where bk P R‰0 is an unknown scale and

W⌧� “ I4 ` ciu
J
⌧� (15)

where u⌧� P R4 is unknown and tiu “ ⌧ X �.
G is solvable if and only if the solution to the above system
yields u⌧� “ 0 for all p⌧, �q P sE .

Proof. Since a⌧� ‰ 0, we can consider the following
change of variables for each edge in the line graph:

u⌧� “ v⌧�{a⌧� (16)

thus Eq. (11) becomes

a⌧1,⌧2W⌧1⌧2a⌧2,⌧3W⌧2⌧3 ¨ ¨ ¨ ¨ ¨ a⌧`,⌧1W⌧`⌧1 “ I4. (17)

If we set
bk “ 1

a⌧1,⌧2 ¨ a⌧2,⌧3 ¨ ¨ ¨ ¨ ¨ a⌧`,⌧1
(18)

then we get Eq. (14). In other words, Eq. (11) is equivalent
to the following system:

$
’&

’%

W⌧1⌧2W⌧2⌧3 ¨ ¨ ¨ ¨ ¨ W⌧`⌧1 “ bkI4

u⌧� “ v⌧�{a⌧�
bk “ 1{pa⌧1,⌧2 ¨ a⌧2,⌧3 ¨ ¨ ¨ ¨ ¨ a⌧`,⌧1q.

(19)

Observe that the first row (which is the same as Eq. (14))
involves the variables bk P R‰0 and u⌧� P R4 only, where
u⌧� appears in the definition of W⌧� via Eq. (15). Thus
it is convenient to proceed as follows: firstly, the first row
in (19) is solved; then, the vectors v⌧� P R4 and the scales
a⌧� P R‰0 are deduced from the second and third rows (this
procedure is applied to the equations generated by all the
cycles in the basis). Recall that solvability depends on the
variables v⌧� P R4 only (see Prop. 4). Indeed, solvability
is equivalent to v⌧� “ 0 for all p⌧, �q P sE . Since u⌧� is
a scalar multiple of v⌧� , we conclude that we could skip
solving the second and third rows in (19) and consider the
first row only: solvability is equivalent to u⌧� “ 0 for all
p⌧, �q P sE .

Remark 6. Thanks to Prop. 5, we have four unknowns for
each edge p⌧, �q P sE in the line graph, representing a vector
u⌧� P R4, plus one unknown scale for each cycle. Thus the
total number of unknowns becomes

4sm ` 1p sm ´ sn ` 1q “ 5sm ´ m ` 1 (20)

which is lower than the formulation related to Thm. 1 where
the number of unknowns is 5sm (see Eq. (12)). The number
of equations remains unchanged and it is given by Eq. (13).
Table 1 reports a comparison between our simplified formu-
lation and the one in Eq. (5) for some examples.

Corollary 1. Let G be a graph and let c1, . . . , cn P R4 be
n generic camera centres. Let tC1, C2, . . . , Cfu be a cycle
consistency basis for the line graph LpGq. Let us collect in
a unique system the equations of the form (14) for all the
cycles in the basis. G is solvable if and only if such system
admits exactly one solution.

Proof. If G is solvable then we get u⌧� “ 0 for all p⌧, �q P
sE , thanks to Prop. 5. By substituting u⌧� “ 0 into (15) we
get W⌧� “ I4 and hence Eq. (14) becomes bkI4 “ I4. This
implies that bk “ 1 for each cycle Ck in the basis. In other
terms, Eq. (14) admits exactly one solution. In the opposite
direction. It is easy to see that if we set all the scales bk “ 1
and all the vectors u⌧� “ 0, then we always get a solution
to Eq. (14). If we assume that there is a unique solution,
then it must be equal to bk “ 1 and u⌧� “ 0, i.e., the graph
is solvable thanks to Prop. 5. If the graph is non solvable,
there will be also other solutions.

Remark 7. Corollary 1 means that the formulation given in
Eq. (14) permits to fix all the ambiguities, so that the so-
lution is exactly one (for a solvable graph). It also implies
that one does not need to explicitly compute the solution(s)
in practice, but it is enough to recover the number of so-
lutions. Observe that the formulation given in Eq. (11),
instead, is subject to a scale ambiguity, for it involves an
unknown scale a⌧� for each edge in LpGq: when consider-
ing a single cycle, for instance, the product of such scales is
fixed but all of them are free (see Eq. (18)). Concerning the
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Uncalibrated solvability ⟹ calibrated solvability
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• Introduction

• Calibrated Case
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• Calibrated vs Uncalibrated

• Conclusion
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Calibrated vs Uncalibrated

Proposition. A solvable (uncalibrated) graph is parallel rigid.

📕 Arrigoni, Fusiello, Rizzi, Ricci & Pajdla. Revisiting viewing graph solvability: an effective approach based on cycle consistency. TPAMI (2022).
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Expected result! 

Well-posed with uncalibrated cameras
⟹ well-posed with calibrated cameras

😅



Calibrated vs Uncalibrated

ProposiHon. A solvable (uncalibrated) graph is parallel rigid.

Proof [sketch].
Parallel rigid graph ⟺ for any parMMon of the edges:

Solvable graph ⟹ for any parMMon of the edges:

📕 Arrigoni, Fusiello, Rizzi, Ricci & Pajdla. RevisiAng viewing graph solvability: an effecAve approach based on cycle consistency. TPAMI (2022).
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Only necessary condition!
Unknown if the opposite holds
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Conclusion
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Calibrated Uncalibrated
Formulation Linear system Polynomial system

Datasets Large-scale Small-scale

Interpretation Connected + Parallel rigid ?
Components Null-space computation ?

“Solved” Open issues



References

📕 F. Arrigoni, A. Fusiello, R. Rizzi, E. Ricci & T. Pajdla. Revisiting viewing graph solvability: an
effective approach based on cycle consistency. IEEE TPAMI (2022).

📕 F. Arrigoni, A. Fusiello, E. Ricci & T. Pajdla. Viewing graph solvability via cycle consistency.
ICCV_(2021). Best paper honourable mention

📕 F. Arrigoni & A. Fusiello. Bearing-based network localizability: a unifying view. IEEE TPAMI (2019).

Thank you for your attention!

4619/06/23 Viewing Graph Solvability

🏆



Viewing Graph Solvability
in Structure from Mo.on

Federica Arrigoni
Politecnico di Milano (Italy) – federica.arrigoni@polimi.it

Photogrammetric Computer Vision Workshop – June 19, 2023 

mailto:Federica.arrigoni@polimi.it

